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At the end of CMIP3 and the IPCC AR4 process in 2007, climate
science underwent a fundamental shift:

--first generation Earth System Models (with at least a coupled carbon
cycle)

--high-top coupled models

--high resolution time-slice experiments

--mitigation scenarios and a re-framing of the climate change problem
--decadal climate prediction

CMIPS5 was formulated to provide a coordinated multi-model
experiment framework to address new science questions and

new scenarios (it was organized by the WCRP Working Group on
Coupled Models—WGCM—and not dictated by IPCC)



Representative Concentration Pathways (RCPs)

CMIP5: a new way of framing the
climate change problem
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what’s new in CMIP5?

(new experimental design formulated at an Aspen Global Change Institute
workshop in summer, 2006)

The new concept was for two classes of models for two timescales and two sets
of science problems

All totally new experiments Many new experiments
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New decadal climate prediction experiments, and CMIP5 Long-Term Experiments

An important new focus on model evaluation in comparison to observations and
understanding reasons for the range of model responses
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CMIP5 Long-Term Experiments

hew direct participation and collaboration with many communities
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The NCAR experience: 15 times more data volume submitted for CMIP5 than for CMIP3
--ratio of original model output generated was about 10 times greater.

CMIP3 CMIP5
Models used 2 (CCSM3 and PCM) 5 (CCSM4, CESM1-BGC, CESM1- WACCM,
CESM1-FASTCHEM, CESM1-CAM5)
Total volume submitted ~ 9.2 TB ~136 TB (over one year period)
(over 10 month period) (factor of 4 greater than ALL of the
CMIP3 multi-model data set)
Total volume generated ~120 TB ~1380 TB
Total simulated years ~14,900 ~28,500
Number of model runs
107 total 555 total
73 (CCSM3), 34 (PCM1) 91 (CCSM4 long-term)

400 (CCSM4 decadal prediction)
64 (other configurations)

Experiments requested 12 37
Output categories 6 19

Number of requested fields 137 951



CCSM4 vs. CESM1/CAM5; Equilibrium climate sensitivity: CCSM4 =3.2°C  CESM1/
CAMS5 = 4.1°C; model with higher sensitivity produces cooler historical climate in latter
part of 20t century and early 215t century due in part to inclusion of the aerosol indirect
effect
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CCSM4 vs. CESM1/CAM5; Equilibrium climate sensitivity: CCSM4 = 3.2°C
CAMS5 = 4.1°C; model with higher sensitivity produces warmer future climate due to

greater amplitude response to the projected decrease in aerosols
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The aggressive mitigation scenario targets warming to 2°C above pre-industrial

(illustrated here with results from CESM1/CAM5S)
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Atlantic Maximum Meridional Overturning
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Global Sea Level Anomalies
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In the RCP scenarios, we can mitigate
temperature but not sea level rise

(note: There are various ways to attempt to
estimate what the magnitude and timing of
global sea level rise will be, with the best
known contribution from thermal
expansion, another using the “example” in
the AR4 taking into account some
contribution from accelerated ice sheet
discharge, and semi-empirical methods)



Precipitation extremes: increased intensity everywhere, but dry days with a mix of

increases and decreases mostly determine average changes in rec:|p|tat|on
CCSM4 precipitation intensity changes 4 conseculive dry days changes
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Average precipitation changes: dry areas get drier, wet areas get wetter (mostly)

CCSM4 total precipitation changes
a) RCP 2. 6 2016 2035 minus 1986-2005 b) RCP 2.6 2081 -2100 minus 1986-2005

c) RCP 4.5 2016 2035 minus 1986-2005 d) RCP 4.5  2081-2100 minus 1986-2005

e) RCP 8.5 2016 2035 minus 1986-2005 fyRCP 8.5 2081-2100 minus 1986-2005
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CMIP5 Paleo Simulations
Climate Feedbacks: Past and Future (CCSM4)
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CMIP5 Earth System Model experiments: CO, in
20t Century Experiments with coupled carbon/
nitrogen cycle
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CMIP5 cloud feedback
experiments:
COSP-enabled
comparisons robustly
show that the CAM5
physics has reduced
long-standing climate
model cloud biases
(too many optically
thick clouds, too few
clouds) evident in
CAM4 and many other
climate models (e.g.
Zhang et al. 2005).
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CMIP5 cloud feedback experiments: aquaplanet and AMIP

Spread in the simulated climate
sensitivity parameter is tied to the
response of the cloud radiative
effect in the SST+4K experiments

in both AMIP and aquaplanet
configurations.
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CMIPS5 decadal prediction experiments

two initialization methods with one model (CCSM4), bias adjusted ten member ensemble
averages (red and blue lines) compared to observations (black line) and free-running 20t

and 21st century simulations with CCSM4 (green line)
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Case study with CMIP5 decadal prediction experiments

Mid-1970s climate shift (prediction for 5 year average, years 3-7)

(Meehl and Teng, GRL, 2012 Mid-1970s shift
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Case study with CMIP5 decadal prediction experiments

Early 2000s hiatus (prediction for 5 year average, years 3-7)

(Meehl and Teng, GRL, 2012)



CMIPS 30 year hindcast with CCSM4

(Prediction for 20 year average, years 11-30)

(Meehl and Teng, GRL, 2012)




30 year prediction:2016-2035 minus 1986-2005
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Global warming somewhat less in initialized prediction
compared to free-running simulation



Issues related to a possible CMIP6

Assuming a next phase of CMIP would be in some ways
comparable to CMIP5--involving several communities,
with a core set of experiments with calibration idealized
experiments (e.g. 1% runs, 4XCO?2, etc.), historical and
future prediction/projection runs, and several layers of
other experiments (noting comments made related to
de-couple CMIP from the IPCC assessment cycle, and
recognizing the reality of having something that would be
state-of-the-art for IPCC assessment, not ruling out other
MIPs that would occur out of cycle due to facilitation of
ESGF); critical dependence on the ESGF and PCMDI (and
DOE funding)



Data management: Promote CMOR as standard protocol, output could be
directly saved into CMOR format

“near-exabyte” scale of CMIP6—need to recognize and plan for how to handle
that data volume

Evaluation: International approach to evaluation, metrics panel useful,
expanded role?, semi-regular model analysis workshops

Logistics: High frequency temporal data desirable for some experiments—
perhaps have a different fields list for different experiments, prioritize fields,

check what fields are being used from CMIP5

make data access easier -- secure funding for ESGF, data access and retrieval
need for scriptable and need better download methods

metafor needs work in concept and application



Experiment specification, requires sufficient detail far enough in advance
for effective configuration, and finalize prioritized fields early

CMIP6 should have continuity with CMIP5

Try to retain continuity with scenarios, though IAM community and our
community may need to adjust or add sensitivity experiments (e.g.
aerosols, land use change, 2C warming bigger peak and decline in RCP2.6)

Details of land-use change that are adapted by each group needs to be
addressed



Science issues:

Land use —aerosols—ESM applications—water cycle—interact with the SSPs
that show quite different outcomes from RCPs

reversibility or geo-engineering

More idealized experiments, e.g. 1% runs but for other forcings, idealized
aerosol, ozone, land use, like the 1% runs

Decadal prediction and extremes
systematic biases

Very high res time slice experiments for tropical cyclones, water cycle, and
other aspects of storms and circulation changes

Higher res coupled simulations for tropical cyclones, extremes, and circulation
changes

Coupled land ice for global and regional sea level rise



CMIP5: exploratory workshop 2006

WGCM approved experimental design 2008 (duration of CMIP5 2008-2013)
CMIP5 model analysis workshop 2012

deadline for papers: July 2012

final report published 2013

CMIP6: exploratory workshop, summer 2013



Summary

Fundamental shift of climate science in 2007 (e.g. mitigation scenarios and a re-
framing of the climate change problem, ESMs, decadal climate prediction) prompted
formulation of CMIP5: more model versions, more experiments including multiple
communities and experiments to address new science problems and increase

understanding (e.g. paleo, cloud feedbacks, carbon cycle feedbacks, decadal climate
prediction) , coordinated by WCRP Working Group on Coupled Models (WGCM)

DOE Cooperative Agreement-funded scientists at NCAR, DOE lab scientists, NSF-
funded scientists at NCAR and universities, and others contributed to running and
analyzing the CMIP5 experiments

Five model versions and sets of CMIPS experiments have been run: CCSM4,
CESM1-BGC, CESM1- WACCM, CESM1-FASTCHEM, CESM1-CAM5

CCSM4 with lower climate sensitivity had a warmer 20t century climate than CESM1/
CAMS5 with a higher climate sensitivity, but CESM1/CAMS5 had a larger 215t century
warming due to the larger amplitude response to the reduction of aerosols

Aggressive mitigation in RCP2.6 produces less than 2C warming above pre-industrial
and cools slightly after mid-21st century

Thus we can mitigate temperature, but not sea level rise which continues to increase
in all scenarios



Summary (continued)

larger response and slower recovery of the AMOC in the future in the higher sensitivity
CESM1/CAMS vs. CCSM4

Paleo experiments with CCSM4 show similar climate sensitivity to present-day,
building confidence that future projections would be consistent

Modeled increase of CO, over 1850-2005 too large
Negative cloud feedbacks in CCSM4 contribute to lower climate sensitivity
Decadal hindcasts with CCSM4 (two initialization techniques) show skill in simulating

the mid-1970s climate shift and 2000s hiatus; initialized predictions show somewhat
less near-term global warming than free-running non-initialized simulations

Discussions for a possible CMIP6 have started (last week at WGCM), and a small
planning workshop in the summer of 2013 (an AGCI session?) will likely be the next
step, involving many contributing communities
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CMIP5 Simulations with CCSM4
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CESM1 (BGC) 1%/yr CO, Experiments

Impact of Warming on Cummulative CO, Fluxes
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RCP8.5 Sea ice extent

CCSM4: dashed
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2100 in CCSM4)

Less present-day sea ice
in Antarctic in CESM1
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CESM1 (vs. about 2090 in
CCSM4)



CCSM4 surface air temperature changes
a) RCP 26 2016-2035 minus 1986-2005 b) RCP 2.6 _ 2081-2100 minus 1986-2005

c) RCP 4.5 2016 2035 minus 1986-2005 d) RCP 4.5 2081 -2100 minus 1986-2005

e) RCP 6.0 2016 2035 minus 1986-2005 fyRCP 6.0  2081-2100 minus 1986-2005

g) RCP 8.5 2016 2035 minus 1986-2005 h) RCP 8.5 2081-2100 minus 1986-2005

Warming in the near-
term (2016-2035, left
column) is similar no
matter what scenario is
followed—near term
climate change is an
adaptation problem

Magnitude of the
warming later in the
century (2081-2100, right
column) depends a lot
on what scenario is
followed—the mitigation
path we follow makes a
big difference after mid-
century

(Meehl et al., 2012,
J. Climate, doi:
http://dx.doi.org/
10.1175/JCLI-
D-11-00240.1)



Climate change doesn’t stop at 2100

Aggressive mitigation in RCP2.6 produces cooling after 2100 (top) but little mitigation
in RCP8.5 results in ongoing large warming to 2300 (bottom)

22nd centu ry CCSM4 surface air tempgglrﬂegﬁzﬂégsry

a) RCP 2.6 2181-2200 minus 2081-2100 b) RCP 2.6 2281-2230 minus 2081-2100

g ~.} SRR '

4
’—‘ 3
— 2
O,
e) RCP 8.5 2181-2200 minus 2081-2100 fyRCP 8.5  2281-2230 minus 2081-2100 N 0 (Meehl et al 3 201 21
& J. Climate, doi:
(C)

http://dx.doi.org/
10.1175/JCLI-
D-11-00240.1)




